REDUCTIVE DECYANATION OF PYRIDINECARBONITRILES BY TITANIUM TRICHLORIDE

A. Clerici and O. Porta

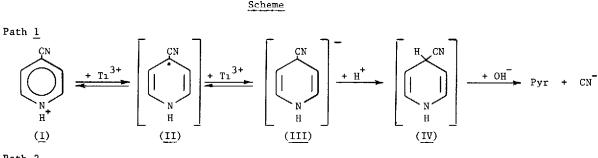
Istituto di Chimica del Politecnico, Via Colgi 39, 20133 Milano, Italy <u>Summary</u> Titanium(III) chloride promotes reductive decyanation of 4-CN- and 2-CN-pyridine. The role of complex forming agents is discussed.

The functional N-oxide group of heterocyclic N-oxides and related compounds is reduced by TiCl₃ with two-electron change^{1a,b,c} and various reductions of other systems have been reviewed². Recently an "unusual synthesis" of 2,4-dibenzyl-tetrahydroquinoline from benzyl radical addition to quinoline in the presence of TiCl₃ has been reported by us³. Now we wish to show a further aspect of the reducing power of Ti(III) the reductive decyanation of pyridinecarbonitriles. Pyridine and cyanide are the only products in these reactions Decyanation is quantitative when the CN- group is at 4-position of the pyridine ring and yields based on TiCl₃ approach or reach 100% when complex forming agents are present during the reaction.

Table - Decyanation of 4-CN-pyridine

Molar ratio 4-CN-pyr/TiCl ₃	Complex forming agent ^d	Pyridine (yields % ^b)	Yıelds % ^C based on TıCl ₃
1 · 1	-	20	40
0.5 : 1	-	52	52
0.25 : 1	-	91	45
0.125 1	-	quantitative	-
1 · 1	cıtrate (10 ml) ^a	39	78
0.5 . 1	11 U	93	93
1.1	CH ₃ COOH (10 ml.)	50	quantitative
0.5 . 1	" "	quantitative	quantitative

a) conc 32 g, of $(NH_4)_2C_6H_6O_7$ per 100 ml of solution


b) yields based on starting 4-CN-pyridine

c) considering two-electron transfer per mole of 4-CN-pyridine

d) complexing agents are added to the starting solution before addition of dilute NaOH

If the CN- group is at the 2-position of the pyridine ring, decyanation and yields based on TiCl₃ never exceed 30 and 15% respectively 3-CN-pyridine does not give decyanation under all experimental conditions reported in the Table.

A mechanism which is consistent with these results is postulated in the Scheme

Path 2

2 (I) $\frac{+2}{-}$ T1 2 (II) ____ (I) + (III)

A two step electron transfer to protonated 4-CN-pyridine (I) could lead to the anion (III) via the free radical (II) through Path 1 or 2 Proton abstraction from the solvent could produce the dihydrointermediate (IV), which gives pyridine via base-catalyzed 1,4 elimination of HCN. The conversion of (II) directly to (IV) by combination with an hydrogen atom is rather improbable because of the lack of hydrogen-atom donor ability of the reaction medium. A mechanism via Path 2, already proposed by Kosower⁴ for different 4-substituted pyridinyl radicals, would require a high concentration of (II) Two points should be emphatized

(III) $\xrightarrow{+ H^{\dagger}}$ (IV) $\xrightarrow{+ OH}$ Pyr + CN

1) the radical stabilizing effect of the CN- group in the radical (II) 5a,b (4-CN- > 2-CN- > 3-CN-) must be considered responsible for the quantitative, partial (30%) and no decyanation of 4-CN-, 2-CN- and 3-CN-pyridine respectively.

11) the reductive power of Ti(III) is known to be higher when complex forming agents are present^{1a} in the reaction and to be greater in acetate than in citrate medium⁶. This would appear the case for the reaction of 4-CN-pyridine in the absence of complex formation, yields based on TiCl, never exceed 52% while range between 78 - 93% and achieve 100% in the presence of citrate and acetic acid respectively

In our opinion, the driving force for the reaction studied involves both the stabilization of T1(IV) state (as T10, or T1(IV)-complexes) and the rearomatization of (IV) by cyanide loss. Further experiments are in progress with the aim to extend this reaction to other substrates. A typical experiment in the absence of complexing agents is as follows to a stirred solution of 4-CN-pyr (10 m mole), dist H_2O (15 ml.), 37% HCl sol (5 ml.) and 15% aq. TiCl₂ sol (10 m mole) is added dropwise a 10% NaOH sol. at 0°C under N $_{2}$ until pH 13-14 is reached. After work up, the reaction mixture is analyzed by G.L.C. Cyanide was detected by conductometric analysis

REFERENCES

1- a) R.T. Brooks and P D. Sternglanz, Anal. Chem. 31, 561 (1959), b) J.M McCall and R.E. Ten Brink, Synthesis, 335 (1975), c) B.W Cue et al., Org Prep and Proc Int 9, 263 (1977). 2- J. E McMurray, Accounts of Chem. Res. 7, 281 (1974).

3- O. Porta and G. Sesana, Tetrahedron Letters, 3571 (1978).

4- E.M. Kosower and A. Teurstein, J. Am. Chem Soc. 95, 6127 (1973).

5- a) R.A MacKay, J R Landolph and E J. Poziomek, J Am Chem Soc 93, 5026 (1971),

b) W.M. Schwarz, E.M. Kosower and I Shain, ibid 83, 3164 (1961).

6- I.M. Kolthoff, Rec Trav. Chim. 43, 772 (1924).

(Received in UK 22 February 1980)